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ABSTRACT: Currently, no theory is available to describe the
conformation of DNA confined in a channel when the
nanochannel diameter is around the persistence length. Back-
folded hairpins in the undulating wormlike chain conformation
result in the formation of loops, which reduces the stretch of
the molecule in the longitudinal direction of the channel. A
cooperativity model is used to quantify the frequency and size
of the loop domains. The predictions agree with results from
the Monte Carlo simulation.

Advances in nanofabrication have made it possible to
fabricate quasi one-dimensional devices with a cross-

sectional diameter on the order of tens to hundreds of
nanometers. These nanochannels serve as a platform for
studying, among others, single DNA molecules.1−7 Further-
more, confinement in a nanospace results in significant
modification of certain important biophysical phenomena,
such as the knotting probability of circular DNA and the effect
of macromolecular crowding on the conformation and folding
of DNA.8−11 The conformation and dynamics of DNA in
confinement have also been investigated with computer
simulations.12−15 All of these results are invaluable in, for
example, the development of a better genome analysis platform
and our understanding of biological processes such as DNA
packaging in viruses or segregation of DNA in bacteria.16,17

The conformation of a wormlike chain in a nanochannel is
determined by the persistence length P, width w, unconfined
radius of gyration Rg, and the cross-sectional diameter of the
channel D. We have investigated the relative extension L∥/L,
that is, the stretch of the molecule along the direction of the
channel divided by its contour length, of DNA with Monte
Carlo simulation (details will be presented below). A typical
result is shown in Figure 1. Due to the interplay of the various
length scales, regimes are established along the curve of L∥/L as
a function of D/P. Odijk’s deflection and Daoud and de
Gennes’s blob regimes are the two extreme regimes originally
proposed.18,19 In the deflection regime (i.e., D < P), the chain is
undulating since it is deflected by the walls. As a result of the
undulation with deflection length λ ∼ D2/3P1/3, L∥/L is reduced
with respect to its fully stretched value of unity according to

= −L L c D P/ 1 ( / )d 2/3
(1)

with c = 0.1701 for a circular cross-section.20 In the range of P2/
w < D < Rg, the chain is in the blob regime.

21 In this regime, the
chain statistics is described as a linearly packed array of subcoils
(blobs). The relative extension is given by the scaling law

∝ −L L D P/ ( / )b 0.701
(2)
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Figure 1. Monte Carlo results of the relative extension versus channel
diameter divided by persistence length (50 nm). The chain width w =
10 nm and contour length L = 8 μm. The curves represent deflection
(blue), deflection with S-loops (green), deflection with S- and C-loops
(red), and blob (magenta) theories. The inset shows the results for w
= 5 (○) and 7.5 (□) nm.
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In the transition regime, the situation is less clear. Several
attempts have been reported to bridge the gap. For the chain to
crossover from the blob regime, the blob size reduces such that
the volume interaction energy per blob becomes less than
thermal energy kT. This results in modified or the same scaling
of L∥/L with D, depending on the presumed chain statistics
within the blob.5,13 On the other hand, for the crossover from
the deflection regime, it has been proposed that the chain
performs a one-dimensional random walk through the
formation of back-folded hairpin conformations.21,22

Here, we seek the conformation of the chain in the range 1 <
D/P < 2. In this range, the confined chain is neither in the full
deflection conformation nor a series of blobs representation.
However, it cannot resist thermal fluctuation that leads to
hairpins along the chain. Indeed, folded structures of length
150−250 nm exist for DNA confined in channels with a cross-
sectional diameter of ∼100 nm.7 As shown by the snapshot of
an equilibrated Monte Carlo conformation in Figure 2, there

are two types of back-folded chain configurations. The C-loop
results from the formation of a single hairpin and occurs at the
end of the chain. An S-loop comes from a pair of hairpins
somewhere in the middle. Both types of loops affect L∥/L, but
the effect of the C-loops becomes vanishingly small for very
long chains. Accordingly, we primarily focus on S-loop
formation, but eventually, we will also include C-loops in our
prediction for the stretch. Note that for 1 < D/P < 2, more than
three parallel chain segments inside the channel is improbable,
and a one-dimensional random walk is not established.
The reduction in L∥/L by S-loop formation is determined by

the average contour length Ls stored inside an S-loop and the
number of S-loops fs per unit contour length. In the derivation
of L∥/L, we make two assumptions. (i) We assume that the
extension of each chain segment in an S-loop is not affected by
the presence of the other two segments. (ii) The contour
length of a hairpin chord is assumed to be πD/2. The relative
extension then reads

π= − −L L L L f L Df/ / (1 2 /3 /3)ds d
s s s (3)

where the final term takes into account the fact that the hairpin
chords do not contribute to the overall stretch. Expressions for
Ls and fs are derived from a Bragg−Zimm type cooperativity
model.23 Loop formation can be viewed as a dynamic process
under constant thermal fluctuation. A pair of hairpins is initially
created followed by the growth of an S-loop domain.
Nucleation is hence determined by the free energy cost of
hairpin formation, which is predominantly bending energy.
Domain growth is mainly controlled by excluded volume
interaction among parallel chain segments inside the loop.
To implement the cooperativity model, the worm-like chain

must be discretized into a sequence of units. Each unit can

either be in a deflection or S-loop state. We define the basic
unit as a chain segment with a contour length of πD, as being
the length stored in two hairpin chords. The smallest S-loop
consists hence of a single unit. For a chain with contour length
L, the total number of units N = L/(πD). The free energy of
the chain with a certain sequence of units can be written as

= +F N F N F2conf s s d u (4)

with Ns and Nd being the number of units in the S-loop state
and the number of S-loops, respectively. The excess in free
energy of a unit in the S-loop state with respect to the
deflection state is denoted by Fs (the deflection state has been
chosen to be the reference state). Note that each S-loop is sided
by two hairpin junctions. The free energy of nucleation of an S-
loop is hence 2Fu, with Fu being the required free energy to
create a hairpin.
The cooperativity model can be solved by using the transfer

matrix method.24,25 In the ground state dominance, the
thermally averaged free energy of the chain reads

= − + + − +⎡
⎣⎢

⎤
⎦⎥F kT N

s s su
/ ln

1 ((1 ) 4 )
2

2 1/2

(5)

with the nucleation and propagation parameters u = exp(−2Fu/
kT) and s = exp(−Fs/kT), respectively. The ensemble-averaged
⟨Ns⟩ and ⟨Nd⟩ can be derived by differentiation of eq 5 with
respect to Fs and 2Fu, respectively. The average number of S-
loops per unit contour length fs = ⟨Nd⟩/L then takes the form

π
=

−
+

− +
−

⎡
⎣⎢

⎤
⎦⎥f

u
D u

s
s su2 (1 )
1

((1 ) 4 )
1s 2 1/2

(6)

and for the average contour length stored in an S-loop Ls =
πD⟨Ns⟩/⟨Nd⟩, we obtain

π= + − + − +
⎡
⎣⎢

⎤
⎦⎥L D

u
s s su1

1
2

( 1 ((1 ) 4 ) )s
2 1/2

(7)

The cooperativity model requires two input parameters u and
s, related to Fu and Fs, respectively. A first principles derivation
of these free energies is a difficult task. We expect that Fu is
dominated by the elastic bending energy associated with the
formation of a hairpin, but there is also an entropic
contribution. We propose the simple form

π= −F kT c P D c/ /u 1 2 (8)

where c1 is a prefactor pertaining to the bending energy πP/D
and c2 includes the entropic contribution. The free energy for
the growth of the S-loop, Fs is mainly determined by excluded
volume interaction. One may assume that the segments inside
an S-loop are partially aligned rather than isotropically oriented.
For a unit of length πD, the excluded volume is given by Ex ≈
1/2 (πD)2w(D/P)1/3.21 The corresponding free energy (per
unit volume) takes the form

π
≈ =F kT

E
D

c
w

D P
/

/12
6x

s 2 3 3 2/3 1/3 (9)

where c3 is another prefactor of order unity. The feasibility of
the cooperativity model for the description of S-loop formation
and in particular the expressions for Fu and Fs will be gauged
with Monte Carlo simulation.
In the Monte Carlo protocol, the DNA chain is modeled as a

string of (N + 1) beads, which are connected by N inextensible
bonds of length lb.

15 The simulation model consists of bending

Figure 2. (a) Snapshot of equilibrated Monte Carlo conformation of
DNA (w = 5 nm, P = 50 nm, L = 8 μm) inside a D = 50 nm channel.
Only a section of the chain is shown. (b) Number of segments profile
along the channel.
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energy between adjacent bonds and two interaction terms. The
bending rigidity is set to reproduce a persistence length of 50
nm. The interactions are hard-sphere repulsion between DNA
beads and hard-wall repulsion between the beads and the wall.
If the center of a bead is beyond the channel wall, the potential
becomes infinitely large, and the configuration is rejected. The
effective channel diameter is hence the real diameter minus the
diameter of the bead. For most simulations, the contour length
of the DNA chain was fixed at 8 μm. The diameter of the bead
was set equal to the bond length lb, which is equivalent to the
chain width w. Accordingly, for chains with a fixed contour
length of 8 μm, the number of beads is 1601, 1068, or 801 for w
= 5, 7.5, or 10 nm, respectively. In each Monte Carlo cycle, we
carried out one crankshaft and one reptation move. The
simulation started from a random conformation and usually
reached equilibrium after 107 cycles. In the production run, we
generated 1010 cycles and recorded the conformation every
other 105 cycles. For each conformation, we calculated the
extension as the maximum span of the DNA molecule along the
channel axis. Finally, the extension was averaged over the
ensemble of 105 conformations. To track the S-loops, we first
generated the segment density profile along the channel for
each conformation. This density profile is subsequently
examined for domains with a contour length exceeding πD
and containing three parallel chain sections (see Figure 2). The
number of S-loops and the number of units in the S-loop state
are then collected. This procedure is carried out for each
conformation in the ensemble, so that we obtain the averages
⟨Nd⟩ and ⟨Ns⟩. From the latter averages we can calculate,
among other quantities, the average number of S-loops per unit
contour length fs = ⟨Nd⟩/L and the average contour length
stored in an S-loop Ls = πD⟨Ns⟩/⟨Nd⟩.
The average number of S-loops per unit contour length and

the average contour length stored in an S-loop are shown in
Figure 3 as a function of channel diameter divided by
persistence length. The statistical fluctuation in the results for
w = 5 nm is somewhat larger as compared to the ones for w =
7.5 and 10 nm due to the larger number of beads and

concomitant longer relaxation time. Note that the cooperativity
model is only relevant in the range 1 < D/P < 2; for larger
channel diameters loops can no longer be discerned, and the
chain starts to coil. With increasing channel diameter and/or
smaller chain width, both fs and Ls increase monotonously.
These effects are most conveniently discussed in terms of Fu
and Fs, respectively. The latter free energies can be obtained
through u and s and the values of fs and Ls from the simulation.
For this purpose, we have solved eqs 6 and 7 for u and s in
terms of fs and Ls. The analytical solution takes the form

π
π π

=
− + −

u
D f

D L f L D( )( ( ) 1)

2 2
s

s s s (10)

and

π
π

=
− −

+ −
s

f L L D

L f L D

( 1)( )

( ( ) 1)
s s s

s s s (11)

The results of Fu and Fs pertaining to the values of fs and Ls in
Figure 3 are shown in Figure 4. As a result of the decrease in Fu
and Fs with increasing D and/or decreasing w, the occurrence
as well as the average length of the S-loops increases.

The free energy of hairpin formation is mainly determined by
elastic bending energy, but there is also an entropic
contribution. We have fitted eq 8 to Fu obtained from the
simulation (see Figure 4a). The values of the fitted constants c1
and c2 are collected in Table 1. The prefactor pertaining to the
bending energy c1 does not depend on the width of the chain w
beyond the accuracy of the fit. Furthermore, its average value

Figure 3. (a) Average number of S-loops per unit contour length vs
channel diameter divided by persistence length. The symbols are
results obtained from simulations with different chain widths: △, w =
10.0 nm; □, w = 7.5 nm; ○, w = 5.0 nm. For all simulations P = 50 nm
and L = 8 μm. The curves represent the cooperativity model. (b) As in
panel a, but for the average contour length stored inside an S-loop.

Figure 4. (a) Free energy cost of hairpin formation vs channel
diameter divided by persistence length. The symbols are as in Figure 3.
The curves represent the prediction based on bending energy and a
constant entropy. (b) As in panel a, but for the free energy pertaining
to the growth of the S-loop. The curves represent the prediction based
on excluded volume.

Table 1. Values of c1, c2, and c3 Resulting from the Fits of
Equations 8 and 9 to the Simulation Data in Figure 4

w (nm) c1 c2 c3

5 1.20 ± 0.03 1.70 ± 0.07 1.08 ± 0.05
7.5 1.19 ± 0.01 1.53 ± 0.03 1.08 ± 0.01
10 1.18 ± 0.02 1.37 ± 0.04 1.04 ± 0.01
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exceeds unity by about 20%, because of hairpin tightening by
depletion from the wall.22 The entropy term c2 significantly
increases with decreasing w, related to reduced volume
interaction of the hairpin chord. Given the good agreement
between eq 8 and the results for Fu, we have refrained from a
more elaborate analysis.21,22

The free energy of growth of the S-loop is expected to be
dominated by excluded volume interaction among the partially
aligned segments within the loop. Accordingly, we have fitted
eq 9 to Fs obtained from the simulation. As can be seen in
Figure 4b, there is equally good agreement between the
prediction for Fs and the simulation results. The adjusted
parameter c3 is constant within the accuracy of the fit,
irrespective the value of w (Table 1). This confirms that Fs is
proportional to the diameter of the chain, in agreement with an
excluded volume mechanism for the growth of the S-loop
domains.
The predictions of the cooperativity model, together with eqs

8 and 9 for the free energies of nucleation and propagation, can
also directly be compared to the values of fs and Ls obtained
from the simulation. As can be seen in Figure 3, the predicted
values based on the values of the parameters in Table 1 are in
equally good agreement. Note however that there is a one-to-
one correspondence between the data in Figures 3 and 4, so
this agreement does not bear more significance.
We now compare the prediction of the cooperativity model

for the relative extension in eq 3 with the data obtained from
the simulations in Figure 1. Undulation theory without the
inclusion of loops in eq 1 describes the extension well for D/P
< 1. For larger channel diameters, the stretch drops and
eventually follows the prediction of the blob model of eq 2 in
the range D/P > P/w. Inclusion of S-loops in the undulation
theory gives a significantly better agreement for 1 < D/P < 2,
but the predicted extensions are still somewhat larger than the
simulation results. Note that our model considers an infinitely
long chain, but in simulations as well as experiments a DNA
molecule has a finite length. The stretch is further reduced due
to C-loop formation at both ends. For each end, we assume a
Boltzmann distribution in the number of back-folded units of
length πD/2. With the relevant nucleation and propagation
parameters u′ = exp(−Fu/kT) and s′ = exp(−Fs/3kT), the
relative extension of a C-loop takes the form

= ′ + ′L L L L s s/ / ( /(1 ))dc
c

d
(12)

with L∥
d/L from eq 1 and its averaged contour length

π= ′ + ′ − ′ + ′ − ′L Du s s u s(1 )/(2(1 )(1 ))c (13)

Note that the formation of a C-loop is energetically more
favorable than an S-loop, due to the reduced free energies for
nucleation (a single hairpin) and propagation (two rather than
three parallel strands). The complete relative extension follows
from the weighed average of the middle and end sections of the
chain

= − +L L L L L L L L L L/ (1 2 / ) / (2 / ) /dsc
c

ds
c

dc
c (14)

with L∥
ds/L and L∥

dc/Lc given by eqs 3 and 12, respectively. Once
S and C-loops are included and irrespective of the chain width,
fairly good agreement is observed in the relevant range 1 ≤ D/
P ≤ 2 (see Figure 1). With decreasing contour length, the
relative weight of the C-loops in the expression for the stretch
increases. Accordingly, the relative extension decreases for
shorter chains. This has been verified with additional

simulations of chains with contour lengths of 2 and 4 μm. It
should be noted however that this applies only to the transition
regime. For wider channels with D > 2P, the relative extension
increases due to progressively weaker confinement.13

We have applied a cooperativity model to describe the
stretch of a wormlike chain confined in a nanochannel with a
diameter of the order of the chain’s persistence length. The
formation of back-folded hairpins can be considered as the
initial stage in the transition from the deflection to the locally
coiled, blob regime.7 Although the range of applicability of the
cooperativity model is limited, it is highly relevant from an
experimental point of view with wormlike chain persistence
lengths and channel cross sections typically in the range of tens
to a few hundreds of nanometers. For larger channel diameters
D > 2P, the cooperativity model no longer provides a
satisfactory description of the stretch. Fortunately, as can be
gauged from Figure 1, in this range the extension data are
already close to the prediction of the blob model. Nevertheless,
more work is needed to further bridge the gap.
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